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Abstract

A harmonically excited dry friction oscillator is examined analytically and numerically. We search for 2p=O-periodic
non-sticking solutions, where O is the excitation frequency. Using the assumption that there are only two turnarounds

during each cycle, we prove that the motion is symmetric in space and time at almost all the values of O. We also show that

the parameter domain of non-sticking symmetric solutions is smaller than it was published in earlier contributions. The

analytical results are confirmed by numerical simulation. We point out that a strange beating phenomenon may cause quite

large numerical errors close to resonance.

r 2006 Elsevier Ltd. All rights reserved.
1. Introduction

The harmonically excited linear oscillator with viscous damping is a well-known system, its solutions can be
found easily using conventional methods. However, if the oscillating body slips on a rough surface, the effects
of dry friction must also be taken into account. Unfortunately, even the modelling of the frictional phenomena
is a difficult task [1–4], still, there are several contributions about self-excited [5–10] and forced [11–15]
vibrations of dry friction systems. The physical system, which we are concerned with, is a harmonically
excited, dry friction oscillator (Fig. 1).

Dry friction force resists relative motion between contacting surfaces of the mass m and the ground. If the
coefficient of dry friction is small, the body slides and its velocity is zero only for the instant when it passes
through zero [13]. However, at great friction coefficient, sticking may occur: the mass remains at rest for a
finite time after the velocity of the oscillator reaches zero.

The equation of motion of the analysed system is the following:

mz00 þ cz0 þ kz ¼ F0 cosðo0tÞ � mmgf ðz0Þ, (1)
ee front matter r 2006 Elsevier Ltd. All rights reserved.
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where ðÞ0 denotes the time derivative d=dt,

f ðz0Þ ¼

1 if z040;

½�m1=m;m1=m� if z0 ¼ 0;

�1 if z0o0

8><
>: (2)

and m, m1 denote the kinetic and static coefficient of friction, respectively. Thus, function f ðz0Þ is meant to take
(mathematically) indetermined values at zero—this corresponds to the stick phase, when the friction force
adjusts itself to make equilibrium with other external forces acting on the body. To make the treatise simpler,
start to measure time at one of the turnaround moments, and rescale time and displacement as t ¼ t

ffiffiffiffiffiffiffiffiffi
k=m

p
and x ¼ zk=F 0:

€xþ 2a _xþ x ¼ cosðOðtþ t0ÞÞ � Sf ð _xÞ, (3)

where _ðÞ denotes d=dt, a ¼ c=ð2
ffiffiffiffiffiffiffi
km
p
Þ, O ¼ o0

ffiffiffiffiffiffiffiffiffi
m=k

p
, S ¼ mmg=F0, and t0 is the initial phase. Using these

notations, the condition of sticking can be formulated as follows:

jx� cosðOðtþ t0ÞÞjoS1 and _x ¼ 0, (4)

where S1 ¼ m1mg=F04S.
System (3) was also studied by Deimling [16], using the theory of differential inclusions. He proved that in

case of a40 there is a single 2p=O-periodic solution, which is globally stable. Den Hartog [11] and Shaw [13]
exploited the piecewise linear nature of the equation, and found analytically non-sticking periodic symmetric
motions. Shaw introduced a method which can be used to determine the stability of periodic solutions, and
showed that the 2p=O-periodic solutions can be unstable in case of ao0. In the following, we restrict ourselves
to the case a ¼ 0. Although Shaw’s contribution [13] is very profound, there are still some questions left open:

(1) Are the existing periodic solutions necessarily symmetric in time and in displacement?
(2) Does the sign of the velocity change only twice per period in case of these solutions?
(3) Does the requirement of having only two sign changes affect the stick–slip boundary?

By exploiting the piecewise linear nature of Eq. (3), explicit solutions can be found between the successive
stops. The solution assumes the following form in case of positive and negative velocities, respectively:

x�ðtÞ ¼ A� cosðtÞ þ B� sinðtÞ þ L cosðOtÞ þ K sinðOtÞ � S. (5)

The constants K and L in the particular solution can be expressed as

K ¼
sinðOt0Þ

O2 � 1
and L ¼ �

cosðOt0Þ

O2 � 1
. (6)

Now, if the initial conditions are given, the coefficients A� and B� can be determined. For example, if
x�ð0Þ ¼ x0 and _x�ð0Þ ¼ 0,

A� ¼ x0 � S � L ¼ x0 � S þ
cosðOt0Þ

O2 � 1
(7)
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and

B� ¼ �KO ¼ �
O sinðOt0Þ

O2 � 1
. (8)

Piecing together the solutions x� and xþ provides a general solution. Unfortunately, this matching cannot be
done analytically, since the next turnaround time t ¼ y1 can be determined using the transcendental equation
_x�ðy1Þ ¼ 0 only.
There is still possibility to find solutions analytically via searching for specific solutions. In the next section

we will try to find periodic, non-sticking solutions, and try to use as few special assumptions about these
solutions as possible.

2. Non-sticking symmetric solutions

Suppose that the solutions are periodic with period T ¼ 2p=O ¼ y1 þ y2. The periodic motion consists of
two non-sticking phases that take the times y1 and y2, respectively. The velocity is negative in the first phase
and positive in the second.

According to these assumptions, _x�ðy1Þ ¼ 0, and so we can obtain another expression for A�:

A� ¼
OðsinðOðt0 þ y1ÞÞ � sinðOt0Þ cosðy1ÞÞ

sinðy1ÞðO2 � 1Þ
. (9)

Note, that this expression is divergent in cases O ¼ 1 and sinðy1Þ ¼ 0. In the first case the well-known
resonance phenomenon leads to the endless increase of the amplitude, while in the latter case an infinity of
asymmetric solutions appear. The following results are valid in case of sinðy1Þa0.

If we substitute expressions (6), (8), and (9) into x�ðt ¼ 0Þ and x�ðt ¼ y1Þ, we can express x0 and the
displacement x1 at the next turnaround instant:

x0 ¼
OðsinðOðt0 þ y1ÞÞ � sinðOt0Þ cosðy1ÞÞ � cosðOt0Þ sinðy1Þ

sinðy1ÞðO2 � 1Þ
þ S, (10)

x1 ¼
O sinðOðt0 þ y1ÞÞ cosðy1Þ � cosðOðt0 þ y1ÞÞ sinðy1Þ � O sinðOt0Þ

sinðy1ÞðO2 � 1Þ
þ S. (11)

If the solution is symmetric, x1 ¼ �x0. Thus, comparison of Eqs. (10) and (11) leads to the following condition
of symmetry:

sinðy1Þð2SðO2 � 1Þ � cosðOðt0 þ y1ÞÞ � cosðOt0ÞÞ

þ Oð1þ cosðy1ÞÞðsinðOðt0 þ y1ÞÞ � sinðOt0ÞÞ ¼ 0. ð12Þ

Exploiting that xþðy1Þ ¼ x1 and _xþðy1Þ ¼ 0, the coefficients Aþ and Bþ can also be expressed:

Aþ ¼ 2S cosðy1Þ þ O
sinðOðt0 þ y1ÞÞ � sinðOt0Þ cosðy1Þ

sinðy1ÞðO2 � 1Þ
, (13)

Bþ ¼ 2S sinðy1Þ � O
sinðOt0Þ

ðO2 � 1Þ
. (14)

According to our assumptions, one cycle of the periodic motion finishes at t ¼ y1 þ y2. Consequently, xþðy1 þ
y2Þ ¼ x0 and _xþðy1 þ y2Þ ¼ 0. Exploiting that y1 þ y2 ¼ 2p=O and solving these equations for the friction
parameter S, one obtains two expressions, that are necessarily equal. The comparison of these expressions
leads to the following equation:

sinðOðt0 þ y1ÞÞðsinðy1Þ þ sinðy2Þ � sinð2p=OÞÞ ¼ � sinðOt0Þðsinðy1Þ þ sinðy2Þ � sinð2p=OÞÞ. (15)

Thus, using that y1 þ y2 ¼ 2p=O and sinðy1Þa0, we obtain

sinðOðt0 þ y1ÞÞ ¼ � sinðOt0Þ, (16)



ARTICLE IN PRESS
G. Csernák, G. Stépán / Journal of Sound and Vibration 295 (2006) 649–658652
which implies

y1 ¼
p
O

and consequently y2 ¼
p
O
. (17)

Solving _xþðy1 þ y2Þ ¼ 0 for sinðOt0Þ, one obtains

sinðOt0Þ ¼
SðO2 � 1Þ sinðp=OÞ
Oðcosðp=OÞ þ 1Þ

. (18)

Return to the examination of the condition of symmetry. Substituting y1 ¼ p=O into Eq. (12) and solving the
equation for sinðOt0Þ, the result is the same as Eq. (18). Thus, the quite trivial assumption about the period
T ¼ 2p=O implies that the non-sticking solutions are symmetric, i.e.,

x1 ¼ �x0 (19)

and the two phases of the cycles are of equal length.
This symmetry of solutions was usually assumed to fulfill in the literature [11,13,15], but has not been

proven yet. Now, it is proven mathematically.
A simple expression can be obtained for x0 in the following way [11,13]. Using Eq. (18) and _x�ðp=OÞ ¼ 0,

one obtains

cosðOt0Þ ¼ x0ð1� O2Þ. (20)

Exploiting that cos2ðOt0Þ þ sin2ðOt0Þ ¼ 1, x0 can be expressed as

x0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðO2 � 1Þ2
�

S2 sin2ðp=OÞ

O2ðcosðp=OÞ þ 1Þ2

s
. (21)

This result, together with Eqs. (7) and (20) implies A� ¼ �S.

3. Validity of results

We supposed that the periodic motion consists of two non-sticking phases and the sign of the velocity is
constant during each phase. To obtain non-sticking motions,

jx0 � cosðOt0ÞjXS1 (22)

must be fulfilled. Using Eq. (20), a remarkably simple slipping condition can be obtained [13]:

x0X
S1

O2
. (23)

For the check of the condition of having only two turnarounds per cycle, we expressed the velocity in the
following form:

_x�ðtÞ ¼ S sinðtÞ � x0O sinðOtÞ þ
S sinðp=OÞðcosðOtÞ � cosðtÞÞ

1þ cosðp=OÞ
p0; t 2 ½0;p=O�. (24)

This expression leads to

Hðt;OÞ :¼
sinðtÞ þ sinðp=OÞ cosðOtÞ þ sinðt� p=OÞ

O sinðOtÞð1þ cosðp=OÞÞ
p

x0

S
; t 2 ½0; p=O�. (25)

It can be checked easily that

lim
t!0

Hðt;OÞ ¼
1

O2
; lim

t!0

_Hðt; 1=ð2nÞÞ ¼ 0 (26)

and

lim
O!1=ð2nþ1Þ�

lim
t!0

_Hðt;OÞ
� �

¼ �1. (27)
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Fig. 2. Behaviour of function Hðt;OÞ: (a) O ¼ 0:5; (b) O ¼ 0:35; (c) O ¼ 0:32; (d) O ¼ 0:25.
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Consequently, Eqs. (25) and (23) are equivalent at t ¼ 0 if S1 ¼ S. Moreover, as O is decreased from 1=ð2nÞ,
the maximum of H increases over 1=O2. As O approaches 1=ð2nþ 1Þ, the slope of H tends to the infinity, and
then the slope changes sign.

According to these equations, and numerical evidence, we believe that the function Hðt;OÞ behaves as
follows. If OX 1

2
, H takes its maximum at t ¼ 0. Thus, Eq. (25) is equivalent to Eq. (23) in this domain if

S1 ¼ S (Fig. 2a). As O is decreased below 1
2
, the slope of H increases at t ¼ 0. Since Hðp=ð2OÞ;OÞ ¼ 0, a local

maximum appears in t 2 ½0;p=ð2OÞ�. This maximum is greater than 1=O2 (Fig. 2b). At O ¼ 1
3
the slope of

H changes from 1 to �1. Consequently, the point of maximum jumps from ½0;p=ð2OÞ� to ½p=ð2OÞ; p=O�
(Fig. 2c). As O is decreased further, the local maximum decreases as well, until O reaches 1

4
, where a new

maximum appears at t ¼ 0 (Fig. 2d).
A similar scenario describes the behaviour of H between O ¼ 1

4
and 1

6
, and generally, between O ¼ 1=ð2nÞ

and O ¼ 1=ð2nþ 2Þ, too. Since some maxima of H are known to be at t ¼ 0, O ¼ 1=ð2nÞ, the other maxima,
for Oa1=ð2nÞ can be found quite easily using a continuation method.

According to the reasoning above, S maxt Hðt;OÞ ¼ S=O2 if OX0:5. Thus, the examined condition is
weaker than the slipping condition (23) in this domain. Consequently, the condition of two turnarounds per
period is of no importance if only sticking solutions exist in the parameter domain O 2 ½0; 0:5Þ. Sticking
motions appear exactly at O ¼ 0:5 if

x0ðO ¼ 0:5Þ ¼
S1

0:52
. (28)

The solution of Eq. (28) is S1 ¼
1
3
. Thus, the check of condition (25) is not necessary if S14 1

3
.

4. Numerical simulation—sticking solutions

Although non-sticking solutions can be found and analysed analytically, this does not seem to be possible in
case of sticking solutions, because of the appearance of transcendental equations. Thus, to explore the possible
solutions, we implemented a method that matches solutions x�ðtÞ and xþðtÞ using the Newton–Raphson
procedure, and uses the explicit solutions while sgn _x remains constant.
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Shaw [13] and Natsiavas [17] determined formulae for the stability eigenvalues l1;2 of the periodic solutions.
These formulae enable us to estimate the rate of convergence of the numerical solution to Eq. (21). For the
special case S1 ¼ S, there are analytically identified parameters, where linearly marginally stable asymmetric
solutions appear. We tested our numerical method at these parameters, where the appropriate duration of
simulation can be estimated by numerical experiments. In the following numerical examples, we performed
simulations until the relative error decreased below 10�8. As it is shown in Fig. 3, the decrease of the relative
error of the amplitude is not uniform, but the graph has an exponential envelope curve.

Expressions (5) can be transformed to the following form:

x�ðtÞ ¼ C�1 sinðtþ ��Þ þ C�2 sinðOtÞ � S

� 2C�1 cos
1� O
2

tþ
��

2

� �
þ const

� �
� sin

1þ O
2

tþ d
� �

� S, ð29Þ

thus, the occurrence of a beating phenomenon is apparent close to resonance. The expected period of
beating is

1� O
2

Tb ¼ p ¼) Tb ¼
2p
j1� Oj

, (30)

according to the textbook formula. The measured period of beating is

Tm ¼
Tb

2
¼

p
j1� Oj

. (31)

The explanation of this result is the following. The phase of the vibration suddenly changes at every switch
between x� and xþ:

D� ¼ �� � �þ ¼ arctan
A�

B�

� �
� arctan

Aþ

Bþ

� �
¼ arctan tan

p
O

� �� �
. (32)

Thus, searching for the solution in ½0;p�,

D� ¼

p
O
� p if 0:5oOo1;

p
O

if O41:

8><
>: (33)

The same phase jump occurs at switches between xþ and x�, too. Consequently, the phase shift during one
period is equal to the duration of the period, modulo 2p. This is why the period of beating is the half of Tb.
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Note that—due to this beating phenomenon—the appropriate simulation time cannot be determined close
to resonance by measuring the difference between successive amplitudes. Certain authors [15] published figures
similar to Fig. 4a. We suppose that the visible difference between their numerical and analytical results is a
consequence of short simulation times.

In Fig. 5, the numerically determined frequency–amplitude curves can be seen at four different values of the
friction parameter S ¼ S1. The number N of sticks per excitation period is also indicated in the figure. The
calculated amplitude curves (21) exactly coincide with the numerical results in the non-sticking cases. At low
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values of S, sticking solutions appear only in the domain O 2 ½0; 1Þ. The number of sticks per excitation period
tends to infinity as O is decreased, as it was already shown in Ref. [12]. However, the NðOÞ diagram is not
monotone decreasing at very low values of the friction parameter (see Fig. 5a). As S is increased, the local
maxima of the NðOÞ diagram disappear (Fig. 5b). The further increase of S leads to the appearance of another
sticking domain in O 2 ð1;1Þ (Fig. 5c). Finally, these two domains of sticking solutions merge and the
amplitude assumes finite values at all values of O (Fig. 5d).

The critical friction coefficient, where sticking solutions appear in O 2 ð1;1Þ, can be estimated as follows. At
large values of O, we approximate sinðp=OÞ by p=O and cosðp=OÞ by 1 in Eq. (21). Thus, Eq. (23) assumes the form

lim
O!1

x0ðOÞ ¼ lim
O!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðO2 � 1Þ2
�

S2p2

4O2

s
o

S1

O2
. (34)

This inequality leads to

S4
S1

S
þ

p2

4

� ��1=2
. (35)

This result has been checked numerically for the case S1 ¼ S, using a continuation method [18].
To determine the parameters, where non-sticking solutions disappear, we numerically calculated the

solution of the following equations:

x0ðO;SÞ �
S1

O2
¼ 0,

q
qO

x0ðO;SÞ �
S1

O2

� �
¼ 0. ð36Þ

For example, the root of Eq. (36) is O � 0:8492, and S � 0:8264 in case S1 ¼ S.
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To check the validity of Eqs. (21), (23), and (25), we examined the frequency–amplitude diagram at low
values of the friction parameter. In Fig. 6, the amplitude of the symmetric solution (21), the stick–slip
boundary (23), and the numerically estimated S maxt Hðt;OÞ curves are shown at S ¼ S1 ¼ 0:02, together with
the numerically determined amplitude and the number of sticks per excitation period.

As it can be seen in the figure, the numerically and analytically determined amplitude curves exactly
coincide in case of slipping motion, and the separation of these curves occurs according to Eqs. (23) and (25).
The significance of Eq. (25) is clearly seen close to the values O ¼ 1

3
; 1
5
, etc., where the analytically calculated

amplitude curves tend to zero, while S maxt H tends to infinity.
Numerical simulation shows that the violation of condition (25) implies the appearance of sticking

behaviour. Thus, we state the conjecture that non-sticking motions with more than two stops per period either
do not exist at all, or if such solutions exist, they are unstable.

Note, that for S1 ¼ S there is a sharp peak at O ¼ 0:5, and there is another peak at O ¼ 0:25. Only one stick
occurs at these parameters per period, which means that the steady-state solutions are asymmetric. As Fig. 7
shows, these solutions open up if S14S.
5. Summary

The possible 2p=O-periodic, non-sticking solutions of a harmonically excited dry friction oscillator were
examined. Assuming that there are only two turnarounds per period, and each period consists of two
phases that take the times y1 and y2, with sinðy1Þa0, we proved, that the durations of the two phases of
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the motion are equal

y1 ¼ y2 ¼
p
O

(37)

and the greatest positive and negative amplitudes are also equal in magnitude:

xð0Þ ¼ xð2p=OÞ ¼ x0 ¼ �x1 ¼ xðy1Þ. (38)

The validity of the solution is limited by the above-mentioned assumptions. Although, the condition of
slipping (23) has already been examined in the literature [13], the condition of two stops per period has been
missing. We checked this latter condition (25), and found, that the two conditions are equivalent if OX0:5 and
S1 ¼ S. Our numerical results showed that sticking solutions occur if either Eq. (23) or (25) are not fulfilled.
Thus, we have the following conjecture: the condition of having non-sticking solutions is approximately

x041þ S1 (39)

in case of small friction parameters (see Figs. 6 and 7), while Eq. (23) can be used if S14 1
3
.
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